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Abstract -  Record linkage is a scheme to retrieve the related 
data’s from more than one table which are not in the same 
structure and not reside in the same places. Matching 
techniques facing following problems, (1) no common attribute 
to match Records between the data tables. (2) Record linkage 
in online is not an efficient and which provide traffic and may 
some connectivity failures will occur. (3) Previous techniques 
will not concentrate on unduplicated error Record (spelling 
mistakes). Using CAA (Concurrent Attribute Acquisition) and 
UGK (User Generated Key) approach not all the attributes of 
the entire remote attribute Records are taken into local site 
[LS]. Rather only the related attribute Records are taken into 
LS. So the communication traffic is reduced. Then Local Entity 
[LE] will be compared with each other Downloaded Remote 
table Records. Traditional Blocking (Group the record which 
have relationship   from the Data set) to identify the required 
Records. Misspelled original Record also identified.  After this 
process related Record identified with their identifier and table 
information. Insert this information on the new table [NT].
Publish NT as a global access Databases. 

Keywords : Record linkage, Data Linkage, Data Matching, 
Record Blocking, Datamining.

I. Introduction

	 Record linkage (RL) refers to the process of finding 
records that refer to the same records from different data 
sources. Record linkage is an useful  technique when we have 
to join data sets that do not share a common identifier[1] (e.g., 
database key, URI, National identification number, Social 
Security Number), Due to differences in record shape, storage 
location this is refer to as heterogeneity[1][12][7] databases. 
Record linkage is a useful tool when performing data mining 
tasks, where the data originated from different sources or 
different organizations. Most commonly, performing RL on 
data sets involves joining records of persons based on name, 
DOB, address, pin code, since no National identification 
number or similar is recorded in the data.
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	 National Identity/Insurance Card number is used by 
many countries for follow their citizens, permanent address, 
and temporary address for the purposes of work, taxation, 
government benefits, health care, and other governmentally-
related functions. Record linkage is important to social 
history research since most data sets, such as census records 
and rural community registers were recorded long before 
the invention of National identification numbers. When old 
sources are digitized, linking of data sets is a requirement for 
longitudinal study. This process is difficult by lack of standard 
spelling of names, family names that change according to 
place of lodging, changing of administrative boundaries, and 
problems of checking the data against other sources.

	 Many organizations in the health sector are collecting, 
storing, processing and analyzing more and larger data 
collections with millions of records. Most of this data is 
about patients and contains identifying (such as names, 
addresses, and dates of birth), as well as confidentiality 
information (such as details of medical procedures and tests). 
Analyzing this data over and over again requires information 
from multiple data source to be linked and in order to 
enable more detailed analysis, and study to link those data 
otherwise its quite impossible to link. Nowadays, healthcare 
record linkage not only faces computational and operational 
challenges due to the increasing size of data collections and 
their complexity, but also faces privacy and confidentiality 
challenges when we integrate the record from other data 
sources. Nowadays, data linkage techniques are applied in 
and between government organizations to find information 
about taxation, census, immigration, social welfare, in crime 
and fraud detection, and also in terrorism intelligence.

	 Computer-assisted data linkage [5] goes back as far as the 
1950s, and the mathematical foundation of probabilistic data 
linkage (as developed by Fellegi and Sunter in 1969) is still 
the basis of many current linkage systems. Often the linkage 
process is challenged by the lack of a common unique entity 
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identifier, and thus becomes non-trivial. In such cases, person 
identifiers (like names and dates of birth), demographic 
information (like addresses) and other specific information 
(like medical details) have to be used to achieve good linkage 
results. These attributes, however, can contain typographical 
errors, they can be coded differently, parts can be out-of-date 
or swapped, or even be missing. 

	 In recent years, computer science researchers have started 
to explore the use of various techniques taken from machine 
learning, data mining, database research, information 
retrieval, and artificial intelligence to improve the linkage 
process[6]. Techniques investigated include learning the 
optimal parameters for approximate string comparison 
techniques[6] (like edit-distance costs); representing records 
as document vectors (an approach taken from information 
retrieval); applying active learning (a technique where the 
learning system selects difficult pairs of records for manual 
classification, thereby reducing human intervention); using 
supervised learning[5] approaches (where manually prepared 
training data, i.e. pairs of classified records, are needed to 
train a classifier); and clustering[6] (unsupervised learning 
techniques that explore the structure of the data without 
the need of manual training examples). Many of these new 
approaches, however, do require training data, which is often 
not available in real world situations, or only obtainable via 
manual preparation (a costly process similar to manual clerical 
review). Additionally, many of the recent publications in this 
area present experimental linkage studies that are based on 
only small data sets with a couple of thousand records.

	 Geocoding [6] is a technique related to data linkage or 
linking of addresses (that can contain typographical errors, 
or it may be incomplete, or out-of-date, or other errors) 
to a reference database and validated addresses and their 
geographic locations (latitude and longitude). Geocoding is 
important, as it is the initial step before record can be loaded 
into geographical information systems, and before it can be 
spatially analyzed and viewed. Spatial record analysis is 
critical, for example When researching of rapidly spreading 
infectious diseases, or when investigating bio-terrorism. 
Accurate linkage of addresses is important, as any subsequent 
data processing, visualization and analysis depends upon the 
quality of the linked records.

	 In the classical probabilistic approach[6][9]   pairs of 
records from two data sets are compared using various 
similarity functions (like exact or approximate string, 

numerical, date, or age comparisons) and then classified 
into matches (if the compared attributes mainly agree), 
non-matches (if the compared attributes mainly disagree), 
or as possible matches (if the linkage system cannot make 
a clear decision).The class of possible matches are those 
record pairs for which manual clerical review is needed to 
decide their final linkage status. Data linkage of two data 
sets A and B considers record pairs in the product space |A| 
X | B| and determines which pairs are matches. Thus, the 
total number of record pairs equals the product of the two 
data sets, i.e.     |A| X | B|, where |. | denotes the number of 
records in a data set. Comparing all pairs is computationally 
only feasible for small data sets containing up to several 
thousand records each, as, for example, linking two data sets 
with 100000 records each would result in 1010 (ten billion) 
record pair comparisons. Techniques known as blocking [6] 
are applied to reduce the number of record pair comparisons. 
They cluster records into blocks and only compare records 
within the same block, thereby reducing the complexity of 
the overall linkage process. By analyzing record linkage, two 
essential characteristics identified by authors of [1]:

	 The databases exhibiting entity heterogeneity [1][7] are 
distributed, and it is not possible to create and maintain a 
central data storage area or warehouse where pre computed 
Linkage results can be stored. [1] Found out a centralized 
solution may be impractical for several reasons 

	 (I) First, if the databases span several organizations, the 
ownership and cost allocation issues associated with the 
warehouse could be quite difficult to address.

	 (II) Second, even if the warehouse could be developed, it 
would be difficult to keep it up-to-date. As updates occur at 
the operational databases, the linkage results would become 
stale if they are not updated immediately.

	 This staleness may be unacceptable in many situations. 
For instance, in a criminal investigation, one maybe 
interested in the profile of crimes committed in the last 24 
hours within a certain radius of the crime scene. In order to 
keep the warehouse current, the sites must agree to transmit 
incremental changes to the data warehouse on a real-time 
basis. Even if such an agreement is reached, it would be 
difficult to monitor and enforce it. For example, a site would 
often have no incentive to report the insertion of a new record 
immediately.
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	 Therefore, these changes are likely to be reported to the 
warehouse at a later time, thereby increasing the staleness of 
the linkage tables and limiting their usefulness. In addition, 
the overall data management tasks could be prohibitively 
time-consuming, especially in situations where there are 
many databases, each with many records, undergoing real-
time changes. This is because the warehouse must maintain 
a linkage Table for each pair of sites, and must update them 
every time one of the associated databases changes.

	 The participating sites [1] allow controlled sharing of 
portions of their databases using standard database queries, but 
they do not allow the processing of scripts, stored procedures, 
or other application programs from another organization. The 
issue here is clearly not one of current technological abilities, 
but that of management and control. If the management of 
an organization wants to open its databases to outside scripts 
from other organizations, there are, of course, a variety of 
ways to implement it. However, the decision to allow only 
a limited set of database queries (and nothing more) is not 
based on technological limitations [1]; rather it is often a 
management decision arising out of security concerns. More 
investment in technology or a more sophisticated scripting 
technique [1], therefore, is not likely to change this situation. 
A direct consequence of this fact is that the local site cannot 
simply send the lone enquiry record to the remote site and 
ask the remote site to perform the record linkage and send the 
results back.

	 An important issue associated with record linkage in 
distributed environments [1] is that of schema integration. 
For record linkage techniques to work well, one should be 
able To identify the common nonkey attributes between 
two databases. If the databases are designed and maintained 
independently as in most heterogeneous Environments [1] it 
would be necessary to develop an integrated schema before 
the common attributes can be identified.

EXAMPLES

	 Consider the situation of a state in India consisting of 
about 40 districts. Each district has criminal data processing 
systems and their respective data models. The district share 
a important portion of the stored criminal records among 
themselves as, it has long been decided that it is not practical 
to create a central data warehouse that consolidates all the 
information.

	 Currently, a police inspector investigating a crime at the 
spot makes a phone call to a control room operator, who 
searches through the different databases. The process is quite 
incompetent. The search keys are satisfied by many records 
in several databases providing all the information back to 
the police officer over the phone is difficult, error-prone, and 
time-consuming. Finally, if all control room operators are 
busy working on other investigations, inspector may have to 
wait for a long time.

	 In order to address this problem, a proposal [1] is 
currently under consideration whereby the field personnel 
would be provided with handheld devices. The basic idea in 
this proposal [1] is that a crime investigator should be able 
to quickly download relevant information on these devices, 
instead of having to wait for a control room operator to do the 
necessary research.

	 Unfortunately, there are several challenges that has been 
found out by authors [1] in implementing this proposal. First, 
since no centralized data warehouse exists, an investigating 
officer may have to send queries to several databases 
separately to download the relevant information. Second, 
the handheld devices do not have enough storage capacity 
to download all the remote Databases [1] in a batch process 
and store them locally. Third, the connection speed on these 
machines is not very high, making it impossible to download 
millions of records on a real-time basis. Therefore, the 
practicality of the entire proposal depends on finding a way to 
download only the relevant criminal records to the handheld 
devices to be complex.

II. Related Works

	 In the work [1] Author proposed a new technique, called 
“Concurrent Attribute Acquisition”, where the Remote 
records are partitioned repeatedly, until we obtain the desired 
path of all the related records. This recursive partitioning can 
be done in one of the following two ways: 1) by transferring 
the attributes of the remote records and comparing them 
locally  2) by sending a local attribute value, comparing it 
with the values of the remote records, and then transferring 
the identifiers of those remote records that match on the 
attribute value. In the concurrent partitioning scheme, 
we make a database query that selects the relevant remote 
records directly, in one single step. Hence, there is no need 
for identifier transfer. Once the relevant records are identified, 
all their attribute values are transferred. In this paper authors 
do not concentrated on heterogeneity problems. 
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	 In the work[5] author tells An alternative technique is to 
use artificially created data, which provides advantages that 
content and error rates can be controlled, and the deduplication 
or linkage status is known.

	 In the work [2] Author proposes a technique, which is 
called “Traditional Blocking”. In this the number of possible 
comparisons increases with the file size, this can make 
it unwieldy the files are large, such as in record linkage. 
Comparisons were therefore restricted to comparisons of 
“blocks” or “Packets” of cases where one or more variables 
matched exactly. This process is referred to as “blocking” 
and it minimize the comparisons that must be undertaken at a 
given time. 

	 In the Work [3] Author said “The simpler approaches, 
like traditional blocking is the overall fastest techniques. 
Among the other fast techniques are the robust suffix array 
and adaptive sorted neighborhood approaches.”They also 
providing indexing techniques for better record linkage.

	 In the work [4] Author describes a new machine learning 
approach that creates expert-like rules for field matching. In 
this approach, the relationship between two field values is 
described by a set of heterogeneous transformations. Previous 
machine learning methods used simple models to evaluate the 
distance between two fields. However, this approach enables 
more sophisticated relationships to be modeled, which 
better capture the complex domain specific, common-sense 
phenomena that humans use to judge similarity. We compare 
our approach to methods that rely on simpler homogeneous 
models in several domains. By modeling more complex 
relationships we produce more accurate results.

III. Proposed Model

	 In this section, the authors [1] introduces a competent 
solution to the online, distributed environment record linkage 
problem.  The main advantage of the sequential approach 
is that, unlike the usual full-information case, not all the 
attributes of all the remote records are taken to the local site; 
instead, attributes are taken one at a time. After retrieving 
an attribute, the matching possibility is revised based on the 
realization of that attribute, and a decision is made whether or 
not to retrieve more attributes from the remote site. 

A. Concurrent Attribute Acquisition 

	 The main drawback of the sequential schemes find out 
by authors [1] (SAA and SIA) is that the related information 

to the remote records must be transferred back and forward 
between the Local and Remote sources; by this way the 
resulting transparency could be huge, particularly when 
the number of remote records is large. When we consider 
the latency-related [1] delays as well, this backward and 
forward nature communication may make them particularly 
inappropriate in many situations. To completely eliminate 
the overhead that occurs in a recursive partitioning scheme 
embedded in SAA or SIA authors [1] introduce new approach, 
Concurrent Attribute Acquisition (CAA). In this CAA, we 
make a database query which is posed to the remote database 
to retrieve only the relevant records. 

	 Let us consider the vector V = (V1, V2, V3….V k) certain 
realizations of this vector leads to a matching probability 
greater than α; call these the favorable realizations. Our 
main objective is to retrieve only the     remote records that 
are nearer to the favorable realizations of V. We intend to use 
the tree effectively to identify these realizations. Any path in 
the tree that have a “STOP” node with a matching probability 
greater than α, which   provides a favorable realization is 
called an acceptance path[1]. Such a path can be expressed as 
a conjunctive condition. 

	 Since various paths have different favorable realizations, 
the overall query condition should be a disjunction of all 
the acceptance paths starting at the root. For the situation, if 
there are m acceptance paths out of the root, and if e j denotes 
the condition of path j, j=1, 2, 3…m then the overall query 
condition can be written as: e1 ν e2….. em. This query condition, 
however, is quite complex and can be compressed further.

	 In order to explain how this can be done, we denote   E(z) 
as the complete query condition rooted at node z. Because 
of the completeness property of the matching tree every 
relevant record (a record with matching probability above 
α) must satisfy E (z), and every irrelevant record (a record 
with matching probability below α) must satisfy ¬E(z), the 
negation of E(z). Let l(z) and r(z) be the left and right children 
of node x, respectively. Denoting the attribute at node z as 
Y(z), E(z) can be expressed as a recursion:

	 E(z) ≡ ((Y(z) = a(Y(z))) Λ E (l(z))) V ((Y(z) ≠ a(Y(z))) 
ΛE(r(z))).

	 Assume, without loss of generality, that a match on Y(z) 
is a favorable realization. Now consider the revised query 
Condition.
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	 E’(z) ≡ ((Y(z) = a(Y(z))) Λ E (l(z))) V E(r(z)).
	 Clearly, E(z) => E’(z), 

	 so a relevant record would not be excluded from 
consideration if E(z) is replaced by E’(z); the question is 
whether irrelevant records would be erroneously included 
as a result of this replacement. Suppose that      b ε R does 
not satisfy E(z), i.e., b is irrelevant, but b satisfies E’(z). 
Therefore, b must satisfy

	 E’(z) Λ ¬ E(z) ≡ (Y(z) = a(Y(z))) Λ E(r(z)) Λ ¬ E(l(z)) => 
(Y(z) = a(Y(z) = a(Y(z))) Λ E(r(z)).

	 Since we assumed that a match on Y(z) is a favorable 
realization, the matching probability of the above condition 
must be greater than the matching probability associated with 
the condition (Y(z) ≠ a(Y(z))) Λ E(r(z)). However, the latter 
condition corresponds to an acceptance path in the tree and 
has a matching probability greater than α, so b has a matching 
probability greater than α. This is a contradiction to the 
assumption that b is irrelevant. Therefore, by rewriting the 
expression of E(z) as E’(z) and using it recursively starting 
at the root, we can ensure that each node is included in the 
query exactly once, thereby reducing the size of the query 
significantly. The size of the compressed query is, therefore, 
the size of tree and is equal to ∑zεZ s(z).

	 In this case, there is no identifier overhead, and the 
included record overhead is still np|θsR. Therefore, the 
normalized overhead in this case is given by

	 Normalized Total Overhead =  + p|θ

	 Using this CAA approach the communication overhead 
is reduced .In following section we apply some blocking 
techniques along with CAA.

B. Blocking and UGK

	 With the probabilistic linkage approach, the number 
of possible comparisons increases with the file size. This 
can make it unwieldy when the files are large, such as 
in this project. Comparisons were therefore restricted to 
comparisons of “blocks” or packet “pocket”[3] of cases 
where one or more variables matched exactly. This process is 
referred to as “blocking”[2][3][4][6]  and simply stratifies the 
linkage process to minimize the number of comparisons that 
must be undertaken at a given time. Multiple passes through 
the data were used for each separable blocking variable.

Fig.1 System Architecture

	 The record linkage approach described here assumes that 
we are linking records in two database tables, X and Y, such 
that there are corresponding attributes in each table, That is, 
the i th column in each table contains elements of the same 
type. In many applications, there are additional complexities; 
for instance, one table might have two attributes, such as 
“first name” and “last name”, and the other table might 
have attributes such as “full name”. These complexities can 
generally be handled in a pre-processing phase [3] (e.g., 
concatenating “first name” and “last name”).

	 Our record linkage process has several phases [3]. First, 
we parse each cell in each record into a set of tokens [3], 
where each token is an individual word, number, or symbol. 
Optionally, we also label the tokens with a semantic category 
(e.g., parsing a full name into first name, optional middle 
initial, and last name), and also optionally apply a set of 
normalization operators to standardize the tokens. Second, 
we 

Fig 2.Comparision Chart
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use a blocking algorithm [3][4][11] to identify pairs of records 
that have the potential to match. This eliminates the need to 
evaluate the entire cross product. In our implementation, the 
key to our approach is the use of transformations to relate 
two values. Transformations that we use for string values 
include: Equal, Synonym, Misspelling, Abbreviation, Prefix, 
Acronym, Concatenation, Suffix, Soundex and Missing.

	 This Fig.1 shows the process of our technique. In this 
approach User Generated Key (UGK) is generated from 
enquiry record. For example enquiry record’s first name is 
Amuthan, Last name Laxman, Data of birth 04-09-1990, 
born city Coimbatore, Postal Code 641 023.System will 
generate Key using this value AMLA04091990641023. If 
key value already exists in the Global Table (GT) the system 
produce the output. GT contains original source information 
with their identity value. If the key value is not available in 
GT, System finds the related records from the online sources. 
In our system the records are retrieved using CAA which is 
explained deeply in the section 3.1 provided by author [1] 
and the values are stored into the local temporary database. 
System retrieves only the related record’s attributes and its 
values, even though it contains 50 attributes it only retrieves 
necessary attributes which are useful for blocking. If data 
base contains 100000 related records with 50 attribute values, 
retrieving those records to local site is totally time consuming 
and requires large space for storage. 

	 With the use of temporary table records, the system 
finds the similar values and generates the UGK using our 
blocking techniques [3][4]. In some instances record value 
may be empty or totally unmatched. In such cases the system 
matches the entity with another attribute of the record. If 
one record’s first name is spelled wrongly but its DOB, born 
city values are correct. For finding correct first name,we 
match this two attribute values with another table’s attribute 
values. This Key value is stored in GT with their original data 
source information like data base name, table name, identity 
field and its value. This process can be repeated for other 
databases. Finally, the output can be generated through this 
GT information.

IV. Conclution 

	 An efficient record linkage technique is developed 
using above approach reduces the time and communication 
overhead. It also reduces complexity by retrieving filtered 
attributes instead of retrieving all attribute values from 

remote to local site. The accuracy of the record can be 
efficiently increased using our blocking techniques and 
different comparison techniques.

	 With the use of clustering technique while retrieval 
of relevant information from the remote databases, time 
consuming can be reduced, which is to be done as future 
work.   In addition, indexing, while retrieving records from 
online databases further increases the efficiency in terms of 
time .
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