
Heterogeneous Record Linkage Using CAA
K. Kumaresan

PG Scholar, Department Of Information Technology, Anna University of Technology, Coimbatore - 641 047,
Tamil Nadu, India

E-mail : Kumaresh2020@gmail.com
(Received on 10 December 2012 and accepted on 15 May 2013)

Abstract - Record linkage is a scheme to retrieve the related
data’s from more than one table which are not in the same
structure and not reside in the same places. Matching
techniques facing following problems, (1) no common attribute
to match Records between the data tables. (2) Record linkage
in online is not an efficient and which provide traffic and may
some connectivity failures will occur. (3) Previous techniques
will not concentrate on unduplicated error Record (spelling
mistakes). Using CAA (Concurrent Attribute Acquisition) and
UGK (User Generated Key) approach not all the attributes of
the entire remote attribute Records are taken into local site
[LS]. Rather only the related attribute Records are taken into
LS. So the communication traffic is reduced. Then Local Entity
[LE] will be compared with each other Downloaded Remote
table Records. Traditional Blocking (Group the record which
have relationship from the Data set) to identify the required
Records. Misspelled original Record also identified. After this
process related Record identified with their identifier and table
information. Insert this information on the new table [NT].
Publish NT as a global access Databases.

Keywords : Record linkage, Data Linkage, Data Matching,
Record Blocking, Datamining.

I. Introduction

	 Record linkage (RL) refers to the process of finding
records that refer to the same records from different data
sources. Record linkage is an useful technique when we have
to join data sets that do not share a common identifier[1] (e.g.,
database key, URI, National identification number, Social
Security Number), Due to differences in record shape, storage
location this is refer to as heterogeneity[1][12][7] databases.
Record linkage is a useful tool when performing data mining
tasks, where the data originated from different sources or
different organizations. Most commonly, performing RL on
data sets involves joining records of persons based on name,
DOB, address, pin code, since no National identification
number or similar is recorded in the data.

Asian Journal of Computer Science and Technology
ISSN 2249-0701 Vol. 2 No. 1, 2013, pp.39-44

© The Research Publication, www.trp.org.in

	 National Identity/Insurance Card number is used by
many countries for follow their citizens, permanent address,
and temporary address for the purposes of work, taxation,
government benefits, health care, and other governmentally-
related functions. Record linkage is important to social
history research since most data sets, such as census records
and rural community registers were recorded long before
the invention of National identification numbers. When old
sources are digitized, linking of data sets is a requirement for
longitudinal study. This process is difficult by lack of standard
spelling of names, family names that change according to
place of lodging, changing of administrative boundaries, and
problems of checking the data against other sources.

	 Many organizations in the health sector are collecting,
storing, processing and analyzing more and larger data
collections with millions of records. Most of this data is
about patients and contains identifying (such as names,
addresses, and dates of birth), as well as confidentiality
information (such as details of medical procedures and tests).
Analyzing this data over and over again requires information
from multiple data source to be linked and in order to
enable more detailed analysis, and study to link those data
otherwise its quite impossible to link. Nowadays, healthcare
record linkage not only faces computational and operational
challenges due to the increasing size of data collections and
their complexity, but also faces privacy and confidentiality
challenges when we integrate the record from other data
sources. Nowadays, data linkage techniques are applied in
and between government organizations to find information
about taxation, census, immigration, social welfare, in crime
and fraud detection, and also in terrorism intelligence.

	 Computer-assisted data linkage [5] goes back as far as the
1950s, and the mathematical foundation of probabilistic data
linkage (as developed by Fellegi and Sunter in 1969) is still
the basis of many current linkage systems. Often the linkage
process is challenged by the lack of a common unique entity

39 AJCST Vol. 2 No.1 January - June 2013

identifier, and thus becomes non-trivial. In such cases, person
identifiers (like names and dates of birth), demographic
information (like addresses) and other specific information
(like medical details) have to be used to achieve good linkage
results. These attributes, however, can contain typographical
errors, they can be coded differently, parts can be out-of-date
or swapped, or even be missing.

	 In recent years, computer science researchers have started
to explore the use of various techniques taken from machine
learning, data mining, database research, information
retrieval, and artificial intelligence to improve the linkage
process[6]. Techniques investigated include learning the
optimal parameters for approximate string comparison
techniques[6] (like edit-distance costs); representing records
as document vectors (an approach taken from information
retrieval); applying active learning (a technique where the
learning system selects difficult pairs of records for manual
classification, thereby reducing human intervention); using
supervised learning[5] approaches (where manually prepared
training data, i.e. pairs of classified records, are needed to
train a classifier); and clustering[6] (unsupervised learning
techniques that explore the structure of the data without
the need of manual training examples). Many of these new
approaches, however, do require training data, which is often
not available in real world situations, or only obtainable via
manual preparation (a costly process similar to manual clerical
review). Additionally, many of the recent publications in this
area present experimental linkage studies that are based on
only small data sets with a couple of thousand records.

	 Geocoding [6] is a technique related to data linkage or
linking of addresses (that can contain typographical errors,
or it may be incomplete, or out-of-date, or other errors)
to a reference database and validated addresses and their
geographic locations (latitude and longitude). Geocoding is
important, as it is the initial step before record can be loaded
into geographical information systems, and before it can be
spatially analyzed and viewed. Spatial record analysis is
critical, for example When researching of rapidly spreading
infectious diseases, or when investigating bio-terrorism.
Accurate linkage of addresses is important, as any subsequent
data processing, visualization and analysis depends upon the
quality of the linked records.

	 In the classical probabilistic approach[6][9] pairs of
records from two data sets are compared using various
similarity functions (like exact or approximate string,

numerical, date, or age comparisons) and then classified
into matches (if the compared attributes mainly agree),
non-matches (if the compared attributes mainly disagree),
or as possible matches (if the linkage system cannot make
a clear decision).The class of possible matches are those
record pairs for which manual clerical review is needed to
decide their final linkage status. Data linkage of two data
sets A and B considers record pairs in the product space |A|
X | B| and determines which pairs are matches. Thus, the
total number of record pairs equals the product of the two
data sets, i.e. |A| X | B|, where |. | denotes the number of
records in a data set. Comparing all pairs is computationally
only feasible for small data sets containing up to several
thousand records each, as, for example, linking two data sets
with 100000 records each would result in 1010 (ten billion)
record pair comparisons. Techniques known as blocking [6]
are applied to reduce the number of record pair comparisons.
They cluster records into blocks and only compare records
within the same block, thereby reducing the complexity of
the overall linkage process. By analyzing record linkage, two
essential characteristics identified by authors of [1]:

	 The databases exhibiting entity heterogeneity [1][7] are
distributed, and it is not possible to create and maintain a
central data storage area or warehouse where pre computed
Linkage results can be stored. [1] Found out a centralized
solution may be impractical for several reasons

	 (I) First, if the databases span several organizations, the
ownership and cost allocation issues associated with the
warehouse could be quite difficult to address.

	 (II) Second, even if the warehouse could be developed, it
would be difficult to keep it up-to-date. As updates occur at
the operational databases, the linkage results would become
stale if they are not updated immediately.

	 This staleness may be unacceptable in many situations.
For instance, in a criminal investigation, one maybe
interested in the profile of crimes committed in the last 24
hours within a certain radius of the crime scene. In order to
keep the warehouse current, the sites must agree to transmit
incremental changes to the data warehouse on a real-time
basis. Even if such an agreement is reached, it would be
difficult to monitor and enforce it. For example, a site would
often have no incentive to report the insertion of a new record
immediately.

AJCST Vol. 2 No.1 January - June 2013 40

K. Kumaresan

	 Therefore, these changes are likely to be reported to the
warehouse at a later time, thereby increasing the staleness of
the linkage tables and limiting their usefulness. In addition,
the overall data management tasks could be prohibitively
time-consuming, especially in situations where there are
many databases, each with many records, undergoing real-
time changes. This is because the warehouse must maintain
a linkage Table for each pair of sites, and must update them
every time one of the associated databases changes.

	 The participating sites [1] allow controlled sharing of
portions of their databases using standard database queries, but
they do not allow the processing of scripts, stored procedures,
or other application programs from another organization. The
issue here is clearly not one of current technological abilities,
but that of management and control. If the management of
an organization wants to open its databases to outside scripts
from other organizations, there are, of course, a variety of
ways to implement it. However, the decision to allow only
a limited set of database queries (and nothing more) is not
based on technological limitations [1]; rather it is often a
management decision arising out of security concerns. More
investment in technology or a more sophisticated scripting
technique [1], therefore, is not likely to change this situation.
A direct consequence of this fact is that the local site cannot
simply send the lone enquiry record to the remote site and
ask the remote site to perform the record linkage and send the
results back.

	 An important issue associated with record linkage in
distributed environments [1] is that of schema integration.
For record linkage techniques to work well, one should be
able To identify the common nonkey attributes between
two databases. If the databases are designed and maintained
independently as in most heterogeneous Environments [1] it
would be necessary to develop an integrated schema before
the common attributes can be identified.

EXAMPLES

	 Consider the situation of a state in India consisting of
about 40 districts. Each district has criminal data processing
systems and their respective data models. The district share
a important portion of the stored criminal records among
themselves as, it has long been decided that it is not practical
to create a central data warehouse that consolidates all the
information.

	 Currently, a police inspector investigating a crime at the
spot makes a phone call to a control room operator, who
searches through the different databases. The process is quite
incompetent. The search keys are satisfied by many records
in several databases providing all the information back to
the police officer over the phone is difficult, error-prone, and
time-consuming. Finally, if all control room operators are
busy working on other investigations, inspector may have to
wait for a long time.

	 In order to address this problem, a proposal [1] is
currently under consideration whereby the field personnel
would be provided with handheld devices. The basic idea in
this proposal [1] is that a crime investigator should be able
to quickly download relevant information on these devices,
instead of having to wait for a control room operator to do the
necessary research.

	 Unfortunately, there are several challenges that has been
found out by authors [1] in implementing this proposal. First,
since no centralized data warehouse exists, an investigating
officer may have to send queries to several databases
separately to download the relevant information. Second,
the handheld devices do not have enough storage capacity
to download all the remote Databases [1] in a batch process
and store them locally. Third, the connection speed on these
machines is not very high, making it impossible to download
millions of records on a real-time basis. Therefore, the
practicality of the entire proposal depends on finding a way to
download only the relevant criminal records to the handheld
devices to be complex.

II. Related Works

	 In the work [1] Author proposed a new technique, called
“Concurrent Attribute Acquisition”, where the Remote
records are partitioned repeatedly, until we obtain the desired
path of all the related records. This recursive partitioning can
be done in one of the following two ways: 1) by transferring
the attributes of the remote records and comparing them
locally 2) by sending a local attribute value, comparing it
with the values of the remote records, and then transferring
the identifiers of those remote records that match on the
attribute value. In the concurrent partitioning scheme,
we make a database query that selects the relevant remote
records directly, in one single step. Hence, there is no need
for identifier transfer. Once the relevant records are identified,
all their attribute values are transferred. In this paper authors
do not concentrated on heterogeneity problems.

41 AJCST Vol. 2 No.1 January - June 2013

Heterogeneous Record Linkage Using CAA

	 In the work[5] author tells An alternative technique is to
use artificially created data, which provides advantages that
content and error rates can be controlled, and the deduplication
or linkage status is known.

	 In the work [2] Author proposes a technique, which is
called “Traditional Blocking”. In this the number of possible
comparisons increases with the file size, this can make
it unwieldy the files are large, such as in record linkage.
Comparisons were therefore restricted to comparisons of
“blocks” or “Packets” of cases where one or more variables
matched exactly. This process is referred to as “blocking”
and it minimize the comparisons that must be undertaken at a
given time.

	 In the Work [3] Author said “The simpler approaches,
like traditional blocking is the overall fastest techniques.
Among the other fast techniques are the robust suffix array
and adaptive sorted neighborhood approaches.”They also
providing indexing techniques for better record linkage.

	 In the work [4] Author describes a new machine learning
approach that creates expert-like rules for field matching. In
this approach, the relationship between two field values is
described by a set of heterogeneous transformations. Previous
machine learning methods used simple models to evaluate the
distance between two fields. However, this approach enables
more sophisticated relationships to be modeled, which
better capture the complex domain specific, common-sense
phenomena that humans use to judge similarity. We compare
our approach to methods that rely on simpler homogeneous
models in several domains. By modeling more complex
relationships we produce more accurate results.

III. Proposed Model

	 In this section, the authors [1] introduces a competent
solution to the online, distributed environment record linkage
problem. The main advantage of the sequential approach
is that, unlike the usual full-information case, not all the
attributes of all the remote records are taken to the local site;
instead, attributes are taken one at a time. After retrieving
an attribute, the matching possibility is revised based on the
realization of that attribute, and a decision is made whether or
not to retrieve more attributes from the remote site.

A. Concurrent Attribute Acquisition

	 The main drawback of the sequential schemes find out
by authors [1] (SAA and SIA) is that the related information

to the remote records must be transferred back and forward
between the Local and Remote sources; by this way the
resulting transparency could be huge, particularly when
the number of remote records is large. When we consider
the latency-related [1] delays as well, this backward and
forward nature communication may make them particularly
inappropriate in many situations. To completely eliminate
the overhead that occurs in a recursive partitioning scheme
embedded in SAA or SIA authors [1] introduce new approach,
Concurrent Attribute Acquisition (CAA). In this CAA, we
make a database query which is posed to the remote database
to retrieve only the relevant records.

	 Let us consider the vector V = (V1, V2, V3….V k) certain
realizations of this vector leads to a matching probability
greater than α; call these the favorable realizations. Our
main objective is to retrieve only the remote records that
are nearer to the favorable realizations of V. We intend to use
the tree effectively to identify these realizations. Any path in
the tree that have a “STOP” node with a matching probability
greater than α, which provides a favorable realization is
called an acceptance path[1]. Such a path can be expressed as
a conjunctive condition.

	 Since various paths have different favorable realizations,
the overall query condition should be a disjunction of all
the acceptance paths starting at the root. For the situation, if
there are m acceptance paths out of the root, and if e j denotes
the condition of path j, j=1, 2, 3…m then the overall query
condition can be written as: e1 ν e2….. em. This query condition,
however, is quite complex and can be compressed further.

	 In order to explain how this can be done, we denote E(z)
as the complete query condition rooted at node z. Because
of the completeness property of the matching tree every
relevant record (a record with matching probability above
α) must satisfy E (z), and every irrelevant record (a record
with matching probability below α) must satisfy ¬E(z), the
negation of E(z). Let l(z) and r(z) be the left and right children
of node x, respectively. Denoting the attribute at node z as
Y(z), E(z) can be expressed as a recursion:

	 E(z) ≡ ((Y(z) = a(Y(z))) Λ E (l(z))) V ((Y(z) ≠ a(Y(z)))
ΛE(r(z))).

	 Assume, without loss of generality, that a match on Y(z)
is a favorable realization. Now consider the revised query
Condition.

AJCST Vol. 2 No.1 January - June 2013 42

K. Kumaresan

	 E’(z) ≡ ((Y(z) = a(Y(z))) Λ E (l(z))) V E(r(z)).
	 Clearly, E(z) => E’(z),

	 so a relevant record would not be excluded from
consideration if E(z) is replaced by E’(z); the question is
whether irrelevant records would be erroneously included
as a result of this replacement. Suppose that b ε R does
not satisfy E(z), i.e., b is irrelevant, but b satisfies E’(z).
Therefore, b must satisfy

	 E’(z) Λ ¬ E(z) ≡ (Y(z) = a(Y(z))) Λ E(r(z)) Λ ¬ E(l(z)) =>
(Y(z) = a(Y(z) = a(Y(z))) Λ E(r(z)).

	 Since we assumed that a match on Y(z) is a favorable
realization, the matching probability of the above condition
must be greater than the matching probability associated with
the condition (Y(z) ≠ a(Y(z))) Λ E(r(z)). However, the latter
condition corresponds to an acceptance path in the tree and
has a matching probability greater than α, so b has a matching
probability greater than α. This is a contradiction to the
assumption that b is irrelevant. Therefore, by rewriting the
expression of E(z) as E’(z) and using it recursively starting
at the root, we can ensure that each node is included in the
query exactly once, thereby reducing the size of the query
significantly. The size of the compressed query is, therefore,
the size of tree and is equal to ∑zεZ s(z).

	 In this case, there is no identifier overhead, and the
included record overhead is still np|θsR. Therefore, the
normalized overhead in this case is given by

	 Normalized Total Overhead = + p|θ

	 Using this CAA approach the communication overhead
is reduced .In following section we apply some blocking
techniques along with CAA.

B. Blocking and UGK

	 With the probabilistic linkage approach, the number
of possible comparisons increases with the file size. This
can make it unwieldy when the files are large, such as
in this project. Comparisons were therefore restricted to
comparisons of “blocks” or packet “pocket”[3] of cases
where one or more variables matched exactly. This process is
referred to as “blocking”[2][3][4][6] and simply stratifies the
linkage process to minimize the number of comparisons that
must be undertaken at a given time. Multiple passes through
the data were used for each separable blocking variable.

Fig.1 System Architecture

	 The record linkage approach described here assumes that
we are linking records in two database tables, X and Y, such
that there are corresponding attributes in each table, That is,
the i th column in each table contains elements of the same
type. In many applications, there are additional complexities;
for instance, one table might have two attributes, such as
“first name” and “last name”, and the other table might
have attributes such as “full name”. These complexities can
generally be handled in a pre-processing phase [3] (e.g.,
concatenating “first name” and “last name”).

	 Our record linkage process has several phases [3]. First,
we parse each cell in each record into a set of tokens [3],
where each token is an individual word, number, or symbol.
Optionally, we also label the tokens with a semantic category
(e.g., parsing a full name into first name, optional middle
initial, and last name), and also optionally apply a set of
normalization operators to standardize the tokens. Second,
we

Fig 2.Comparision Chart

43 AJCST Vol. 2 No.1 January - June 2013

Heterogeneous Record Linkage Using CAA

use a blocking algorithm [3][4][11] to identify pairs of records
that have the potential to match. This eliminates the need to
evaluate the entire cross product. In our implementation, the
key to our approach is the use of transformations to relate
two values. Transformations that we use for string values
include: Equal, Synonym, Misspelling, Abbreviation, Prefix,
Acronym, Concatenation, Suffix, Soundex and Missing.

	 This Fig.1 shows the process of our technique. In this
approach User Generated Key (UGK) is generated from
enquiry record. For example enquiry record’s first name is
Amuthan, Last name Laxman, Data of birth 04-09-1990,
born city Coimbatore, Postal Code 641 023.System will
generate Key using this value AMLA04091990641023. If
key value already exists in the Global Table (GT) the system
produce the output. GT contains original source information
with their identity value. If the key value is not available in
GT, System finds the related records from the online sources.
In our system the records are retrieved using CAA which is
explained deeply in the section 3.1 provided by author [1]
and the values are stored into the local temporary database.
System retrieves only the related record’s attributes and its
values, even though it contains 50 attributes it only retrieves
necessary attributes which are useful for blocking. If data
base contains 100000 related records with 50 attribute values,
retrieving those records to local site is totally time consuming
and requires large space for storage.

	 With the use of temporary table records, the system
finds the similar values and generates the UGK using our
blocking techniques [3][4]. In some instances record value
may be empty or totally unmatched. In such cases the system
matches the entity with another attribute of the record. If
one record’s first name is spelled wrongly but its DOB, born
city values are correct. For finding correct first name,we
match this two attribute values with another table’s attribute
values. This Key value is stored in GT with their original data
source information like data base name, table name, identity
field and its value. This process can be repeated for other
databases. Finally, the output can be generated through this
GT information.

IV. Conclution

	 An efficient record linkage technique is developed
using above approach reduces the time and communication
overhead. It also reduces complexity by retrieving filtered
attributes instead of retrieving all attribute values from

remote to local site. The accuracy of the record can be
efficiently increased using our blocking techniques and
different comparison techniques.

	 With the use of clustering technique while retrieval
of relevant information from the remote databases, time
consuming can be reduced, which is to be done as future
work. In addition, indexing, while retrieving records from
online databases further increases the efficiency in terms of
time .

Rferences

[1] 	 Debabrata Dey, Member, IEEE, Vijay S. Mookerjee, and Dengpan
Liu (2011), ‘Efficient Techniques For Online Record Linkage’, IEEE
Transactions On Knowledge And Data Engineering, Vol. 23, No. 3,
March 2011

[2]	 Steven N. Minton and Claude Nanjo,Craig A. Knoblock, Martin
Michalowski, and Matthew Michelson ‘A Heterogeneous Field
Matching Method For Record Linkage’ in part by the Air Force Office
of Scientific Research under grant number FA9550-04-1-0105

[3]	 Peter Christen, The Australian National University, “A Survey Of
Indexing Techniques For Scalable Record Linkage And Deduplication”,
IEEE Transactions On Knowledge And Data Engineering, Vol. Z, No.
Y, Zzzz 2011 2

[4] 	 William E. Winkler, U.S. Bureau of the Census “Matching And Record
Linkage”.

[5]	 Peter Christen,”Probabilistic Data Generation For Deduplication And
Data Linkage” Australian Research Council (ARC) Linkage Grant
LP0453463 and partially funded by the NSW Department of Health

[6]	 Peter Christen, Tim Churches “Secure Health Data Linkage And
Geocoding: Current Approaches And Research Directions” Australian
Research Council (ARC) Linkage Grant LP0453463.

[7]	 Matthew Michelson, Craig A. Knoblock “Mining Heterogeneous
Transformations For Record Linkage” Air Force Office of Scientific
Research under grant number FA9550-04-1-0105

[8] 	 Liang Jin, Chen Li, Sharad Mehrotra , University of California, Irvine,
CA 92697, USA “Efficient Record Linkage In Large Data Sets”

[9] 	 Peter Christen August 2007 TR-CS-07-03 “Towards Parameter-Free
Blocking For Scalable Record Linkage”

[10] 	 Soufiane Boufous, Caroline Finch, Andrew Hayen, Ann Williamson
“Data Linkage Of Hospital And Police Crash Datasets In Nsw” NSW
Injury Risk Management Research Centre University of New South
Wales, Sydney NSW 2052, Australia.

[11]	 Peter Christen, Tim Churches “Febrl – Freely extensible biomedical
record linkage” Australian National University.

[12]	 Lifang Gu,Rohan Baxter,Deanne Vickers, Chris Rainsford “
Record Linkage: Current Practice and Future Directions ”CSIRO
Mathematical and Information Sciences GPO Box 664, Canberra,
ACT 2601, Australia,CMIS Technical Report No. 03/83.

AJCST Vol. 2 No.1 January - June 2013 44

K. Kumaresan

